Self-Expressive Dictionary Learning for Dynamic 3D Reconstruction
نویسندگان
چکیده
منابع مشابه
Self-expressive Dictionary Learning for Dynamic 3D Reconstruction
We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where...
متن کاملDecomposition and dictionary learning for 3D trajectories
A new model for describing a three-dimensional (3D) trajectory is proposed in this article. The studied trajectory is viewed as a linear combination of rotatable 3D patterns. The resulting model is thus 3D rotation invariant (3DRI). Moreover, the temporal patterns are considered as shift-invariant. This article is divided into two parts based on this model. On the one hand, the 3DRI decompositi...
متن کاملSelf-organizing maps with dynamic learning for signal reconstruction
Wireless Brain Machine Interface (BMI) communication protocols are faced with the challenge of transmitting the activity of hundreds of neurons which requires large bandwidth. Previously a data compression scheme for neural activity was introduced based on Self Organizing Maps (SOM). In this paper we propose a dynamic learning rule for improved training of the SOM on signals with sparse events ...
متن کاملDecentralized Dynamic Discriminative Dictionary Learning
We consider discriminative dictionary learning in a distributed online setting, where a network of agents aims to learn a common set of dictionary elements of a feature space and model parameters while sequentially receiving observations. We formulate this problem as a distributed stochastic program with a non-convex objective and present a block variant of the Arrow-Hurwicz saddle point algori...
متن کاملDependent nonparametric bayesian group dictionary learning for online reconstruction of dynamic MR images
In this paper, we introduce a dictionary learning based approach applied to the problem of real-time reconstruction of MR image sequences that are highly undersampled in k-space. Unlike traditional dictionary learning, our method integrates both global and patch-wise (local) sparsity information and incorporates some priori information into the reconstruction process. Moreover, we use a Depende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2018
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2017.2742950